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Abstract Accurate representations of the surface potential and the orbital velocity of nonlinear water waves are
obtained, given the spatial wave-elevation field and its time derivative along two-dimensional sections of the ocean
surface. The effect of a horizontal current is accounted for. The method is three-dimensional. The kernel of an inte-
gral equation and its right-hand side, both nonlinear functions of the elevation, are obtained in series expansions,
and expressed explicitly by Fourier transform (FFT). Calculations for a periodic sine-wave and non-periodic model
directional irregular wave field over swaths (wave slope in the range ±0.3 in both cases) illustrate the formulas.
The Gibbs phenomenon along the boundaries affects the very high-order contributions in the non-periodic case.

Keywords Fast Fourier transform · Orbital velocity · Surface wave fields in three dimensions · Waves on current

1 Introduction

Ocean surface waves are commonly recorded in the form of time series in single, fixed points. An example is the
record obtained from a down-looking laser-based wave sensor, on the Draupner E platform in the central North Sea.
This contains the famous Draupner New Year Wave, with crest a height of 18.5 m and a trough-to-trough period
of 12 s, recorded on January 1, 1995 [1–3]. In a more recent method one obtains, instead, the wave elevation as
a function of the spatial coordinate, at a fixed time. This strategy was pursued in airborne measurements of storm
waves in the Gulf of Tehuantepec experiment (GOTEX) [4]. Elevation records over swaths 5 km long and 200 m
wide were obtained as a function of the spatial coordinate, assuming that the speed of the airplane is much faster
than the typical wave phase speed. Measurements obtained in the front and aft of the airplane are important features
of the experiment, enabling an evaluation of the time derivative of the surface elevation. Thus, the surface elevation,
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56 J. Grue

η, and its time derivative, ηt , were obtained as functions of the horizontal coordinates, x1, x2, where x1 denotes the
coordinate along the flight direction, and x2 the lateral coordinate.

Accurate calculation of the fluid velocities induced by the nonlinear wave field has been requested in GOTEX
[5], since the wave kinematics could not be measured. The orbital velocity calculation may be regarded as a post
processing of the elevation data base and is useful to improve the analysis of the measurements, interpret observed
breaking events, evaluate velocities in the entire wave field (including along the vertical), derive statistics of the
wave induced velocities, and compare with velocity measurements when available. With this motivation we derive
calculation formulas obtaining the orbital velocity in realistic ocean wave fields such as GOTEX. The input to the
calculations is the spatial wave elevation, η, and its time derivative, ηt , where both quantities are presented in the
form of functions of the horizontal coordinates, x1, x2, over certain regions of the ocean, at fixed time. The effect
of a horizontal current is accounted for. The method is three-dimensional.

The formulation is based on potential theory. Conservation of mass leads to a formulation where the motion is
obtained by solving the Laplace equation with the position of the free surface given. The solution is obtained in the
form of an integral equation with the velocity potential at the free surface as unknown; see Sect. 2. The analysis
concerns the solution procedure of the integral equation. This has a kernel that is nonlinear in the surface eleva-
tion, η. The right-hand side of the equation is also a nonlinear function of η. These nonlinear functions, obtained in
series expansions of η, are used in the inversion procedure of the integral equation, where the terms are expressed
in explicit form by Fourier transform. More precisely, the terms are expressed by a sum of moments of η times the
inverse Fourier transform of the wavenumber times: the Fourier transform of products between ηm and a scaled
normal velocity, or free-surface potential, or the horizontal gradient of η times the free-surface potential. The final
form of the integral expressions involves only the Fourier transform (FFT) and is easy to implement for numerical
calculations.

The analysis in Sect. 3 is carried out for finite and infinite water depth, with solution procedure discussed in
Sect. 4. The formulas are illustrated in three-dimensional calculations of a sine-wave and a model directional irreg-
ular wave field. The latter has a peak period of 10 s, a wave slope in the range ±0.3 and extends over a swath 2,000 m
by 200 m (Sect. 5). Concluding remarks are given in Sect. 6.

2 Mathematical formulation

2.1 Kinematic boundary condition at the free surface

The kinematic boundary condition at the free surface defines the normal velocity of the fluid motion at the free
surface (∂φ/∂n – assuming potential theory). If the potential is known along the free surface, the tangential velocity
can be obtained [6]. We study the motion of a wave field in three dimensions propagating in water of finite depth h.
The wave field may interact with a horizontal current. Let x = (x1, x2) denote horizontal coordinates, y the vertical
coordinate and t time. Let η(x, t) denote the free-surface elevation. We assume that the velocity field at any point
of the fluid is decomposed by

v = U + grad φ. (1)

Here, U = (U1, U2) denotes a horizontal current. In the subsequent analysis U is assumed to be constant. The second
term describes the wave-induced velocity field. This is assumed to be obtained by a potential-theory formulation,
where φ(x, y, t) denotes the velocity potential.

The kinematic boundary condition at the free surface gives
∂η

∂t
+ (U + ∇φ) · ∇η = ∂φ

∂y
, (2)

where we have introduced the horizontal gradient by ∇ = (∂/∂x1, ∂/∂x2). Working with the velocity normal to the
free surface we note that
∂φ

∂n
=

(
∂φ

∂y
− ∇φ · ∇η

) (
1 + |∇η |2

)− 1
2

. (3)
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Computation formulas by FFT of the nonlinear orbital velocity 57

Combining (2) and (3) we obtain

∂φ

∂n

(
1 + |∇η |2

) 1
2 = ∂η

∂t
+ U · ∇η = ∂ζ

∂t
. (4)

This defines the quantity ζt = ηt + U · ∇η which is used in the subsequent analysis.

2.2 Integral equation to determine the wave potential: h = ∞

A relation to determine the wave potential at the free surface is derived from the mass-conservation principle. For
simplicity we assume in this subsection that the water depth is infinite (h = ∞). The effect of a finite water depth
is discussed in Sect. 3.3 below. We denote the value of the wave-induced velocity potential on the free surface by
φ̃(x, t) = φ(x, y = η(x, t), t), where η(x, t) denotes the surface elevation. By use of Green’s theorem with an
evaluation point (x, η) on the free surface, we obtain

φ̃ + 1

2π

∫
S

φ̃′ ∂

∂n′
1

r
dS′ = 1

2π

∫
S

1

r

∂φ′

∂n′ dS′. (5)

Here, 1/r denotes the three-dimensional source function where r = |(x, y)− (x′, y′)| denotes the distance between
the evaluation point (x, y) and integration point (x′, y′). A prime denotes the integration variable. The evaluation
surface S corresponds to the instantaneous position of the free surface, and the unit normal is pointing out of the

fluid. The surface element is dS =(1 + |∇η |2) 1
2 dx, where dx = dx1dx2.

Using the kinematic boundary condition (4) at the free surface, φn(1 + |∇η|2) 1
2 = ζt , we obtain

φ̃ + 1

2π

∫
x′

φ̃′ (1 + |∇′η′|2
) 1

2 ∂

∂n′
1

r
dx′ = 1

2π

∫
x′

ζ ′
t

r
dx′, (6)

where
∫

x′ denotes integration over the horizontal plane. Clamond and Grue [7, Sect. 6] and Grue [8] applied the
Fourier transform to invert (6), obtaining

F(φ̃) = F(ζt )

k
+ F

(
ηF−1[kF(φ̃)]

)
+ ik

k
· F(η∇φ̃) + F(R1), (7)

where F denotes the Fourier transform over the horizontal plane, F−1 is the inverse transform, k = (k1, k2) is the
wavenumber in spectral space and k = |k|. The terms contained in the remainder R1 were expressed by ordinary
integration. Fructus et al. [9] implemented, tested and documented the method in full, and used it to study fully
nonlinear evolution of various nonlinear water-wave fields, deriving the following version of the remainder R1 in
(7) (with U = 0)

R1 = 1
2η2F−1[kF(ζt )] − ηF−1[kF(ζtη)] + 1

2F−1[kF(ζtη
2)] + R2, (8)

where

2πR2 =
∫
x′

φ̃′ [(1 + D2)−
3
2 −1

]
∇′ ·

[
(η′ − η)∇′ 1

R

]
dx′ +

∫
x′

ζ ′
t

R

[
(1 + D2)

− 1
2 − 1 + 1

2 D2
]

dx′. (9)

Here, D = (η′ − η)/R and R = |x′ − x|. Further, η′ = η(x′, t), φ̃′ = φ̃(x′, t), ζ ′
t = ζt (x′, t), ∇′ = (∂x ′

1, ∂x ′
2)

etc. The integrals in (9) were integrated numerically by Fructus et al. [9]. The terms expressed by Fourier trans-
form represent a global evaluation of the nonlinear wave field. The remaining terms R2 obtained in (9) represent
contributions computed by local integration.

The purpose of the present paper is to express also R2 in terms of Fourier series expansions. This has the advan-
tage that only FFTs of the wave field are required to obtain the fully nonlinear motion and is a simplification of
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the computational strategy. The formulas provide alternative expressions and computational strategy compared to
the direct numerical integration of R2. Through three-dimensional calculations we illustrate the magnitude of the
various terms in (7)–(9) for a sine wave and a model irregular wave field.

Once the potential φ̃ is obtained, the orbital velocity at the surface is readily obtained by

(u1, u2) = ∇φ̃ − ζt + ∇η · ∇φ̃

(1 + |∇η|2) ∇η, (10)

where ∇ denotes the horizontal gradient.

3 Fourier transform of the integral equation

3.1 The right-hand side of the integral equation (6)

The integral equation has two integral terms. We consider first the integral (1/2π)
∫

x′(1/r)ζ ′
t dx′ on the right-hand

side of (6). The aim is to express this term by a sum of Fourier transforms. We note that 1/r = (1/R)(1 + D2)
− 1

2

where R = |x − x′| and D2 = (η − η′)2/R2. Making use of Taylor series expansion (D2 < 1) we obtain

1

r
= 1

R
− (η − η′)2

2 R3 + 3(η − η′)4

22 · 2! R5
− 3 · 5(η − η′)6

23 · 3! R7 + · · · (11)

We then use that 1/R = 2πF−1(e−ik·x′
/k) (where F−1 denotes inverse Fourier transform). By differentiation we

obtain

1

R2n+1 = F−1[2πe−ik·x′
(−k2)n/k]

12 · 32 · 52 · · · ·(2n − 1)2 . (12)

This means that

1

2πr
= F−1

[
e−ik·x′

(
1

k
+ k(η − η′)2

2! + k3(η − η′)4

4! + k5(η − η′)6

6! + · · ·
)]

= F−1

( ∞∑
n=0

2n∑
m=0

k2n−1η2n−m(−η′)me−ik·x′

(2n − m)! m!

)
, (13)

where we have used the binominal formula to obtain the latter expression. By carrying out the integration over the
x′-variable we obtain

1

2π

∫
x′

ζ ′
t (−η′)mF−1[k2n−1e−ik·x′ ]dx′ = F−1{k2n−1F[ζt (−η)m]}, (14)

giving

1

2π

∫
x′

ζ ′
t dx′

r
=

∞∑
n=0

2n∑
m=0

η2n−mF−1{k2n−1F[ζt (−η)m]}
(2n − m)! m! =

∞∑
n=0

�(2n+1)(ζt , η). (15)

Expressed entirely by moments of the spatial surface elevation, η2n−m , times the inverse Fourier transform,
F−1{k2n−1F[ζt (−η)m]}, the sum in (15) gives the fully nonlinear representation of the integral. The contribu-
tions involving linear, cubic, quintic and products to seventh power read
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Computation formulas by FFT of the nonlinear orbital velocity 59

�(1)(ζt , η) = 1

2π

∫
x′

ζ ′
t dx′

R
= F−1

[F(ζt )

k

]
, (16)

�(3)(ζt , η) = 1
2η2F−1[kF(ζt )] − ηF−1[kF(ζtη)] + 1

2F−1[kF(ζtη
2)], (17)

�(5)(ζt , η) = 1
24η4F−1[k3F(ζt )] − 1

6η3F−1[k3F(ζtη)] + 1
4η2F−1[k3F(ζtη

2)]
− 1

6ηF−1[k3F(ζtη
3)] + 1

24F−1[k3F(ζtη
4)], (18)

�(7)(ζt , η) = 1
6!η

6F−1[k5F(ζt )] − 1
5!η

5F−1[k5F(ζtη)] + 1
4!2!η

4F−1[k5F(ζtη
2)]

− 1
3!3!η

3F−1[k5F(ζtη
3)] + 1

2!4!η
2F−1[k5F(ζtη

4)] − 1
5!ηF−1[k5F(ζtη

5)]
+ 1

6!ηF−1[k5F(ζtη
6)], (19)

and so on. Expression (16) gives the linear contribution of the full integral, Eq. 17 the cubic contribution (given
also in (8)), the sum of expressions in (18) the quintic contribution, expression (19) contains products of seventh
power, and so on. (Note that �(1)(ζt , η) is independent of η.)

3.2 The left-hand side of (6)

Consider the integral

�(φ̃, η) = 1

2π

∫
x′

φ̃′ (1 + |∇′η′|2
) 1

2 ∂

∂n′
1

r
dx′, (20)

where the integrand may be rewritten as

(
1 + |∇′η′|2

) 1
2 ∂

∂n′
1

r
= (1 + D2)−

3
2 ∇′ ·

[
(η′ − η)∇′ 1

R

]
. (21)

We expand (1 + D2)−3/2 in Taylor series (D2 < 1) and use that ∇′ · [(η′ − η)∇′(1/R)] = ∇′η′ · ∇′(1/R)

− (η − η′)(1/R3). By taking the gradient of (12) we obtain

1

R2n
∇′ 1

R
= 1

2n + 1
∇′ 1

R2n+1 = (2n + 1)F−1[2πe−ik·x′
(−k2)n(−ik)/k]

12 · 32 · 52 · · · (2n + 1)2 , (22)

and

(−1)n

2π

1 · 3 · 5 · · · ·(2n − 1) · (2n + 1)2(η − η′)2n

2n n! R2n
∇′η′ · ∇′ 1

R
= − (η − η′)2n∇′η′ · F−1(e−ik·x′

k2n−1ik)

(2n)! . (23)

Using (12) again, we obtain

− (−1)n

2π

1 · 3 · 5 · · · · · (2n + 1)(η − η′)2n+1

2n n! R3+2n
= (η − η′)2n+1F−1(e−ik·x′

k2n+1)

(2n + 1)! . (24)

By using the binominal formula for (η − η′)2n+1 and carrying out the integration over the x′-variable, the function
�(φ̃, η) in (20) becomes

�(φ̃, η) =
∞∑

n=0

�(2n+2)(φ̃, η) (25)

where

�(2n+2)(φ̃, η) =
2n∑

m=0

η2n−mF−1{k2n−1ik · F[φ̃(−η)m∇η]}
(2n − m)!m! −

2n+1∑
m=0

η2n+1−mF−1{k2n+1F[φ̃(−η)m]}
(2n + 1 − m)!m! , (26)
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and n ≥ 0. The sums in (26) involve moments of η times the inverse Fourier transform of: the wavenumber times
the Fourier transform of products between φ̃, ηm and ∇η. Contributions to the integral involving quadratic terms,
products of fourth power and sixth power, read

�(2)(φ̃, η) = F−1
[

ik
k

· F(φ̃∇η)

]
− ηF−1[kF(φ̃)] + F−1[kF(φ̃η)], (27)

�(4)(φ̃, η) = 1

2
η2F−1[kik · F(φ̃∇η)] − ηF−1[kik · F(φ̃η∇η)] + 1

2
F−1[kik · F(φ̃η2∇η)]

− 1

6
η3F−1[k3F(φ̃)] + 1

2
η2F−1[k3F(φ̃η)] − 1

2
ηF−1[k3F(φ̃η2)] + 1

6
F−1[k3F(φ̃η3)], (28)

�(6)(φ̃, η) = 1

24
η4F−1[k3ik · F(φ̃∇η)] − 1

6
η3F−1[k3ik · F(φ̃η∇η)]

+1

4
η2F−1[k3ik · F(φ̃η2∇η)] − 1

6
ηF−1[k3ik · F(φ̃η3∇η)] + 1

24
F−1[k3ik · F(φ̃η4∇η)]

− 1

120
η5F−1[k5F(φ̃)] + 1

24
η4F−1[k5F(φ̃η)] − 1

12
η3F−1[k5F(φ̃η2)]

+ 1

12
η2F−1[k5F(φ̃η3)] − 1

24
ηF−1[k5F(φ̃η4)] + 1

120
F−1[k5F(φ̃η5)], (29)

and so on. Using partial integration we note that �(2)(φ̃, η) equals the quadratic contribution in (7).

3.3 Effect of a finite depth

The effect of a finite water depth is accounted for replacing the Green function by 1/r+1/r1 where the latter accounts

for an image with respect to the bottom boundary located at y = −h. Thus, 1/r1 = [R2 + (η′ + η + 2h)2]− 1
2 =

(1 + �2)
− 1

2 /R1, where R2
1 = R2 + 4h2 and �2 = (η′ + η)(η′ + η + 4h)/R2

1. We show in the Appendix that

1

2π

∫
x′

ζt

r1
dx′ =

∞∑
n=0

ϒ(n+1)(ζt , η), (30)

where

ϒ(n+1)(ζt , η) = (−1)n ∑n
m=0

∑n
q=0

(n
m
) (n

q
)

ηn−m(η + 4h)n−qF−1[e−2kh pn−1(2kh)F(ζtη
m+q)]

2nn!(2h)2n−1 . (31)

We note that ϒ(1)(ζt ) = F−1[e−2khF(ζt )/k].
The effect of the horizontal bottom of the fluid layer means that the dipole (∂/∂n)(1/r) is replaced by

(∂/∂n)(1/r + 1/r1) in the integral equation. This results in a new term on the left-hand side of the equation
similar to the one in (20) with integrand (R = x′ − x)

(
1 + |∇′η′|2

) 1
2 ∂

∂n′
1

r1
= − y′ + y + 2h − ∇′η′ · R

r3
1

. (32)

In the Appendix we show that

1

2π

∫
x′

φ̃′ ∂

∂n′
1

r1
dS = 
(1)(φ̃) +

∞∑
n=0


(n+2)(φ̃, η), (33)
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where 
(1)(φ̃, η) = −F−1[e−2khF(φ̃)], and, for n ≥ 0,


(n+2)(φ̃, η) =
n+1∑
m=0

n∑
q=0

(
n + 1

m

) (
n
q

)
ηn+1−m(η + 4h)n−q (−1)n+1F−1[e−2kh pn(2kh)F(φ̃ηm+q)]

2nn! (2h)2n+1

+ 2h
n+1∑
m=0

n+1∑
q=0

(
n + 1

m

) (
n + 1

q

)
ηn+1−m(η + 4h)n+1−q (−1)nF−1[e−2kh pn+1(2kh)F(φ̃ηm+q)]

2n+1(n + 1)! (2h)2n+3

+
n∑

m=0

n∑
q=0

(
n
m

) (
n
q

)
ηn−m(η + 4h)n−q (−1)nF−1[e−2kh pn−1(2kh) ik · F(φ̃ηm+q∇η)]

2nn!(2h)2n−1 , (34)

where the polynomials pn(2kh) are defined in the Appendix.

4 Solution of the integral equation

4.1 Infinite water depth

The integral equation becomes, for h = ∞,

φ̃ + �(2)(φ̃, η) + �(4)(φ̃, η) + · · · = F−1
[F(ζt )

k

]
+ �(3)(ζt , η) + �(5)(ζt , η) + · · · (35)

where �(2n+1)(ζt , η) and �(2n)(φ̃, η), n = 1, 2, . . ., are given in (15) and (26), respectively. Let us introduce

φ̃(0,1) = F−1
[F(ζt )

k

]
(36)

and obtain recursively

φ̃(0,2n+1) = φ̃(0,2n−1) + �(2n+1)(ζt , η), n = 1, 2, . . . , (37)

the sequence {φ̃(0,2n+1)}, n = 0, 1, . . ., represents increasingly improved approximations to the right-hand side of
(35).

Improved approximations to the solution of (35) are obtained. With φ̃(0,3) given in (37) with n = 1, the cubic
approximation is obtained by solving iteratively the equation

φ̃(m,3) = φ̃(0,3) − �(2)(φ̃(m−1,3), η), (38)

for m = 1, 2, . . . , until convergence is obtained. Only very few iterations are required in practice. Equation 38
corresponds to Eq. 7 with R1 expressed by (8) and R2 in (8) put to zero.

The quintic approximation to (35) is obtained by solving iteratively

φ̃(m,5) = φ̃(0,5) − �(2)(φ̃(m−1,5), η) − �(4)(φ̃(m−1,5), η), (39)

for m = 1, 2, . . ., with φ̃(0,5) given by (37) with n = 2. Likewise, the seventh-order approximation to (35) is
obtained by solving iteratively

φ̃(m,7) = φ̃(0,7) − �(2)(φ̃(m−1,7), η) − �(4)(φ̃(m−1,7), η) − �(6)(φ̃(m−1,7), η), (40)

for m = 1, 2, . . ., with φ̃(0,7) given by (37) with n = 3. Similarly, higher-order approximations to (35) yield
higher-order solutions to the integral equation.
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62 J. Grue

4.2 Finite depth

For finite water depth the integral equation becomes

F−1[(1 − e−2kh)F(φ̃)] + �(2)(φ̃, η) + �(4)(φ̃, η) + · · · + 
(2)(φ̃, η) + 
(3)(φ̃, η)

+
(4)(φ̃, η) + 
(5)(φ̃, η) + · · · = F−1
[
(1 + e−2kh)F(ζt )

k

]
+ �(3)(ζt , η) + �(5)(ζt , η)

+ · · · + ϒ(2)(ζt , η) + ϒ(3)(ζt , η) + ϒ(4)(ζt , η) + ϒ(5)(ζt , η) + · · · (41)

The functions correcting for the effect of a finite depth include 
(n)(φ̃, η), n = 1, 2, . . ., defined in (66), and
ϒ(n)(ζt , η), n = 1, 2, . . ., defined in (59). As before, �(2n+1)(ζt , η) and �(2n)(φ̃, η), n = 1, 2, . . ., are given in (15)
and (26), respectively.

Similarly as for infinite depth we define φ̃(0,1,h) by

F−1[(1 − e−2kh)F(φ̃(0,1,h))] = F−1
[
(1 + e−2kh)F(ζt )

k

]
. (42)

We then define successively φ̃(0,2n+1,h), n = 1, 2, . . . by

F−1[(1 − e−2kh)F(φ̃(0,2n+1,h))]
= F−1[(1 − e−2kh)F(φ̃(0,2n−1,h))] + �(2n+1)(ζt , η) + ϒ(2n)(ζt , η) + ϒ(2n+1)(ζt , η), (43)

which approximates the right-hand side of (41).
Successive approximations to the integral equation (41) are then obtained. The cubic approximation is obtained

by solving iteratively

F−1[(1 − e−2kh)F(φ̃(m,3,h))] = F−1[(1 − e−2kh)F(φ̃(0,3,h))]
−�(2)(φ̃(m−1,3,h), η) − 
(2)(φ̃(m−1,3,h), η) − 
(3)(φ̃(m−1,3,h), η), (44)

for m = 1, 2, . . . Similarly, the quintic approximation is obtained by

F−1[(1 − e−2kh)F(φ̃(m,5,h))] = F−1[(1 − e−2kh)F(φ̃(0,5,h))]
−�(2)(φ̃(m−1,5,h), η) − �(4)(φ̃(m−1,5,h), η)

−
(2)(φ̃(m−1,5,h), η) − 
(3)(φ̃(m−1,5,h), η) − 
(4)(φ̃(m−1,5,h), η)

−
(5)(φ̃(m−1,5,h), η), (45)

m = 1, 2, . . . Higher-order approximations to the integral equation (41) are obtained similarly.

5 Numerical examples

5.1 Computations for a sine-wave

We assume for simplicity that the water depth is infinite and that there is no current. We consider a periodic sine-
wave and assume that ηt = 0.3 sin x1 and η = 0.3 cos x1 for 0 < x1, x2 < 2π (a very strong wave). There are 64
nodes in each horizontal direction. The first five terms on the right-hand side of the integral equation are visualized
in Figs. 1a–e. The computations show that �(2n+1) behave like δ2n+1 sin x1, n = 0, 1, 2, . . ., where the coefficients
have alternating sign. They are, roughly, δ1 ∼ 3 × 10−1, δ3 ∼ −7 × 10−3, δ5 ∼ 3 × 10−4, δ7 ∼ −1.7 × 10−5

and δ9 ∼ 1 × 10−6 (in this example). Ratios are: |δ1/δ3| ∼ 43, |δ3/δ5| ∼ 23, |δ5/δ7| ∼ 18 and |δ7/δ9| ∼ 17. The
effect of truncation may be estimated by the next term of the expansion that is left out: A relative error of 1/1,000
is obtained by including terms up to �(3). The relative error becomes 5 × 10−5 by including terms up to �(5),
and 3 × 10−6 by including terms up to �(7). Figure 1f illustrates that the sum �(5) + �(7) + �(9) and the integral
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Fig. 1 a �(1)(ζt , η) = F−1[F(ζt )/k] (solid line), �(3)(ζt , η) (+ + +) and �(5)(ζt , η)+�(7)(ζt , η)+�(9)(ζt , η) (. . .). b �(3)(ζt , η) (+ + +)
and �(5)(ζt , η)+�(7)(ζt , η)+�(9)(ζt , η) (. . .). c �(5)(ζt , η) (solid line) and �(7)(ζt , η) (. . .). d �(7)(ζt , η) (. . .) and �(9)(ζt , η) (×××).

e �(9)(ζt , η) (solid line) and (× × ×). f �(5)(ζt , η) + �(7)(ζt , η) + �(9)(ζt , η) (…), (1/2π)
∫

x′[ζ ′
t /R]

[
(1 + D2)

− 1
2 − 1 + 1

2 D2
]

dx′

(solid line) and �(9)(ζt , η) (× × ×). Input wave field: ηt = 0.3 sin x1, η = 0.3 cos x1. Basin: 0 < x1, x2 < 2π . 64×64 resolution

(1/2π)
∫

x′
ζ ′

t
R

[
(1 + D2)

− 1
2 − 1 + 1

2 D2
]
dx′ in (9) are very close, where the former is more accurate than the latter.

The estimate of the integral becomes improved by increasing the resolution.
The contributions to the integral on the left-hand side are illustrated by computing −�(2n+2)(φ0, η) (with a resolu-

tion of 50 by 50) with the potential given by φ0 = F−1[F(ηt )/k]. While the individual contributions to �(2) are not
small, an exact cancellation is taking place for this particular choice of φ0 and η, giving that �(2)(φ0, η) = 0. Com-
putations in Figs. 2a–c show that −�(2n+2)(φ0, η) behave like δ2n+2 sin 2x1, n = 1, 2, . . ., i.e., a double oscillation,

123



64 J. Grue

0 1 2 3 4 5 6
−4

−2

0

2

4 x 10−4

0 1 2 3 4 5 6
−2

−1

0

1

2

0 1 2 3 4 5 6
−1

−0.5

0

0.5

1

x 10−5

x 10−6

(a) (b)

(c)

Fig. 2 a −�(4)(φ0, η) (solid line) and −(1/2π)
∫

x′ φ̃′
[
(1 + D2)− 3

2 −1
]
∇′ · [

(η′ − η)∇′ 1
R

]
dx′ (. . .) (resolution 50×50),

b−�(6)(φ0, η) (resolution 50×50 and 200×200), c−�(8)(φ0, η) (resolution 50×50). Input wave field:ηt = 0.3 sin x1,η = 0.3 cos x1.
φ0 = F−1[F(ηt )/k]. Basin: 0 < x1, x2 < 2π

where the coefficients have alternating sign. The coefficients are, roughly, δ4 ∼ −3.5 × 10−4, δ6 ∼ 1.7 × 10−5

and δ8 ∼ −0.85 × 10−6. The computations show that δ4 on the right-hand side and δ5 on the left-hand side are of
same magnitude, and similarly for δ6 and δ7 (both of magnitude 1.7 × 10−5), and similarly for δ8 and δ9 (both of

magnitude 1 × 10−6). Figure 2a shows that the integral −(1/2π)
∫

x′ φ̃′
[
(1 + D2)− 3

2 −1
]
∇′ · [

(η′ − η)∇′ 1
R

]
dx′

(with φ̃ = φ0) in (9) and −�(4)(φ0, η) are relatively close, where evaluation of the latter is more accurate than the
former. Improved resolution improves the integral.

Working with the truncation (39), i.e., the quintic approximation to the full integral equation, implies a relative
error of 5 × 10−5 with an input wave field given by ηt = 0.3 sin x1, η = 0.3 cos x1. Similarly, working with (40),
i.e., a seventh-order approximation, means a relative error of 3 × 10−6 (for the same wave field).

5.2 Swath of an irregular wave field

With relevance to the GOTEX experiment [4,5] we consider a model irregular wave field. The instantaneous surface
elevation is obtained from a directional JONSWAP spectrum in deep water (h = ∞) with γ = 3.3 and Tp =10 s. The
directionality is given by D(α) = (1/β) cos2(πα/2β) for |α| ≤ β (D = 0 elsewhere) with β = 0.7. The elevation is
represented by η(x, t) = ∑M/2−1,N/2−1

m=−M/2,n=−N/2 Amn cos χmn where χmn = kmn ·x−ωmnt+θmn , |Amn| is obtained from

the spectrum, the argument from random numbers between 0 and 2π , kmn = |kmn|eiαmn and M = N = 64. For illus-
trative purposes we assume that the time derivative is represented by ηt (x, t) = ∑M/2−1,N/2−1

m=−M/2,n=−N/2 Amnωmn sin χmn .
The elevation and its temporal and spatial derivatives are evaluated over a truncated area 2,000 m long and 200 m
wide with a resolution of �x1 = �x2 = 2 m. The slope along the x1-axis, the main direction of propagation, varies
in the range between −0.3 and 0.3 and is a fairly strong sea (Fig. 3a). There is no current.

Calculations of �(1), �(3), �(5) and �(7) presented in Fig. 3 show a magnitude of the former of about 60 (m2/s). �(3)

has a magnitude of about 1.6 (m2/s), �(5) about 0.1 (m2/s) and �(7) about 0.018 (m2/s). This implies relative ratios of
�(1)/�(3) � 38, �(3)/�(5) � 16 and �(5)/�(7) � 5. Calculation of �(2)(φ0, η) (with φ0 = F−1[F(ηt )/k]) shows
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Fig. 3 a Wave slope ηx1 of irregular sea for 0 < x1 < 2, 000 m, 0 < x2 < 200 m; b �(1)(ζt , η); c �(3)(ζt , η); d �(5)(ζt , η);

e �(7)(ζt , η); f �(2)(φ0, η); g �(5)(ζt , η) (—-) and (1/2π)
∫

x′
ζ ′

t
R

[
(1 + D2)

− 1
2 − 1 + 1

2 D2
]

dx′ (….) along the section with x2 = 140

m; h (1/2π)
∫

x′ φ̃′
[
(1 + D2)− 3

2 −1
]
∇′ · [

(η′ − η)∇′ 1
R

]
dx′ along the section with x2 = 140 m
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that this has a magnitude of about 4 (m2/s) implying a ratio of �(1)/�(2) � 15 (Fig. 3f). The comparison between

�(5) and the integral (1/2π)
∫

x′
ζ ′

t
R

[
(1 + D2)

− 1
2 − 1 + 1

2 D2
]
dx′ in Fig. 3h shows that both are similar (Fig. 3g).

Evaluation of the integral (1/2π)
∫

x′ φ̃′
[
(1 + D2)− 3

2 −1
]
∇′ · [(η′ − η)∇′ 1

R

]
dx′ shows that this has magnitude up

to 0.08 (m2/s) (Fig. 3h). The evaluation of �(4) exploded because the Gibbs phenomenon polluted the function in
the entire domain. Evaluation of �(4), �(6) and �(8) did not explode for the coarser resolution of 4 m, however.
The functions were clearly affected by the Gibbs phenomenon spreading from the boundaries to the entire domain
(results not shown).

The computations of the non-periodic swath (Fig. 3) exhibit Gibbs phenomenon along the boundaries. For the
leading contributions (�(1), �(3), �(5), �(2)), oscillations were found only along the boundaries. For �(7), the Gibbs
phenomenon polluted the function also in the interior of the domain (but this function has a very small amplitude).
The Gibbs phenomenon, moreover, caused the evaluation of �(4) to explode for the relatively fine resolution of 2 m
(but not for the coarser one). The effect of the Gibbs phenomenon is avoided for periodic wave fields.

6 Concluding remarks

We have discussed the solution of an integral equation obtaining an accurate representation of the wave potential on
the free surface given the spatial wave elevation field, η, and its time derivative, ηt . The method is three-dimensional
and is useful for application to realistic wave fields in three dimensions where the wave motion may take place
along two horizontal variables. Also, the effect of a horizontal current is accounted for in the formulation. The
derivations are motivated by practical needs in oceanographic measurements of storm seas obtaining the surface
elevation and its time derivative along regions of the free surface. From the wave record it has been a desire, through
a postprocessing of the elevation data, to obtain the orbital velocity in strong wave events [4,5]. Purposes include:
enhanced interpretation of the database, evaluation of velocities in breaking events and the entire wave field as such,
derive statistics of the wave induced velocities, and compare with potential velocity measurements when available.
The derivations and computations presented in this paper are made to support these purposes.

The integral equation we have been dealing with is given in Eq. 6. The effect of a current is accounted for on its

right-hand side by the term (1/2π)
∫

x′
ζ ′

t
r dx′ where ζt = ηt + U · ∇η. We have derived formulas that express the

nonlinear integrals of the equation in terms of sums of Fourier transforms. The expressions imply that the nonlin-
earity is computed with global contributions. More specifically we deduced that the integral equation becomes, in
the case of infinite water depth (see (35)),

φ̃ + �(2)(φ̃, η) + �(4)(φ̃, η) + · · · = F−1 [F(ζt )/k] + �(3)(ζt , η) + �(5)(ζt , η) + · · ·
where �(2n+1)(ζt , η) and �(2n)(φ̃, η), n = 1, 2, . . ., are expressed by Fourier transform and inverse transform; see
(15) and (26), respectively. The terms are easy to implement. In the case of a finite, constant water depth the integral
equation has more terms accounting for an image with respect to the sea floor; see (41).

The various contributions to the integral equation have been evaluated in two numerical examples. The calcu-
lations for a (periodic) sine-wave with ηt = 0.3 sin x1 and η = 0.3 cos x1 show the following: all terms on the
right-hand side contribute to a sine, and, the terms on the left-hand side also contribute to a sine, but with double
the wavenumber. Ratios between the �’s become (in this case): �(1)/�(3) � 43, �(3)/�(5) � 23, �(5)/�(7) � 18
and �(7)/�(9) � 17. In this particular case �(2) vanishes exactly. For the other �’s we find: �(2n) ∼ �(2n+1),
n = 2, 3, 5. The solution is obtained with a relative error of 5×10−5 if the quintic approximation is used, including
�(2), �(4), �(3) and �(5) (in this case).

In the second example a model directional irregular sea obtained from a directional JONSWAP spectrum over
a swath 2,000 m long and 200 m wide has wave slope in the range ±0.3 and a resolution in each direction of 2 m.
Calculations of the �’s and �’s show ratios of (in this case): �(1)/�(3) � 38, �(1)/�(2) � 15, �(3)/�(5) � 16 and

�(5)/�(7) � 5. A relatively good comparison between �(5) and the integral (1/2π)
∫

x′
ζ ′

t
R

[
(1+D2)

− 1
2 −1+ 1

2 D2
]
dx′
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was found. The integral (1/2π)
∫

x′ φ̃′
[
(1 + D2)− 3

2 −1
]
∇′ · [

(η′ − η)∇′ 1
R

]
dx′ is comparable to �(5). The com-

putations of the non-periodic swath exhibited the Gibbs phenomenon along the boundaries, but did not affect the
dominant contributions in the inner part of the domain (�(1), �(3), �(5), �(2)). For high-order contributions like �(7),
the Gibbs phenomenon was found to significantly pollute the function also in the interior of the swath. Evaluation of
�(4) and the higher-order �’s exploded for the relatively fine resolution of 2 m but not for a coarser resolution of 4 m.

We note that the orbital velocity of the wave field is obtained from Eq. 10 accounting an evaluation at the actual
position of the free surface [5].

Appendix: Effect of a finite depth: derivations

The effect of a finite water depth is accounted for by replacing the source (sink) Green function 1/r by 1/r + 1/r1

where the latter accounts for an image with respect to the bottom boundary located at y = −h. Thus, 1/r1 =
[R2 + (η′ + η + 2h)2]− 1

2 = (1 + �2)
− 1

2 /R1, where R2
1 = R2 + 4h2 and �2 = (η′ + η)(η′ + η + 4h)/R2

1. A
Taylor series expansion in �2 is used.

Repeated differentiations of the relation 1/R1 = F−1[T (x′)/k] with respect to the variable 2h, where T (x′) =
2πe−ik·x′−2kh , k = |k|, gives

1 · 3 · 5 · · · (2n − 1)(2h)2n−1

R2n+1
1

= F−1{T (x′)pn−1(2kh)}, n = 1, 2, . . . (46)

1

2h R1
= F−1[T (x′)p−1(2kh)], n = −1 (47)

where pn−1(2kh) = ∑n−1
m=0 αn−1,m(2kh)m are polynomials of degree n − 1, for n ≥ 1, and p−1(2kh) = 1/(2kh).

The first few polynomials read (with 2kh = K ):

p−1 = 1

K
, (48)

p0 = 1, (49)

p1 = K + 1, (50)

p2 = K 2 + 3(K + 1), (51)

p3 = K 3 + 6K 2 + 3 · 5(K + 1), (52)

p4 = K 4 + 10K 3 + 45K 2 + 3 · 5 · 7(K + 1), (53)

p5 = K 5 + 15K 4 + 105K 3 + 15 · 28K 2 + 3 · 5 · 7 · 9(K + 1), (54)

p6 = K 6 + 21K 5 + 210K 4 + 105 · 12K 3 + 105 · 45K 2 + 3 · 5 · 7 · 9 · 11(K + 1), (55)

etc. Using the Binominal formula for (η′ + η)n = ∑n
m=0

(
n
m

)
ηn−mη′m and similar for (η′ + η + 4h)n =

∑n
q=0

(
n
q

)
(η + 4h)n−qη′q , we obtain

1

r1
=

∞∑
n=0

(−1)n ∑n
m=0

∑n
q=0

(
n
m

) (
n
q

)
η′m+qηn−m(η + 4h)n−qF−1[T (x′)pn−1(2kh)]

2nn!(2h)2n−1

(56)

By use of
1

2π

∫
x′

ζ ′
t η

′m+qF−1[T (x′)pn−1(2kh)]dx′ = F−1[e−2kh pn−1(2kh)F(ζtη
m+q)], (57)

the integral becomes
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1

2π

∫
x′

ζt

r1
dx′ =

∞∑
n=0

ϒ(n+1)(ζt , η), (58)

where

ϒ(n+1)(ζt , η) =
(−1)n ∑n

m=0
∑n

q=0

(
n
m

) (
n
q

)
ηn−m(η + 4h)n−qF−1[e−2kh pn−1(2kh)F(ζtη

m+q)]
2nn!(2h)2n−1 . (59)

We note that ϒ(1)(ζt ) = F−1[e−2khF(ζt )/k].
The effect of the horizontal bottom of the fluid layer means that the dipole (∂/∂n)(1/r) is replaced by (∂/∂n)(1/r+

1/r1) in the integral equation. This results in a new term on the left-hand side of the equation similar to the one in
(20) with integrand (R = x′ − x)

(
1 + |∇′η′|2

) 1
2 ∂

∂n′
1

r1
= − y′ + y + 2h − ∇′η′ · R

r3
1

. (60)

Using that 1/r3
1 = (1 + �2)

− 3
2 /R3

1 (where R2
1 = R2 + 4h2 and �2 = (η′ + η)(η′ + η + 4h) as above) we employ

the Taylor series expansion of (1 + �2)
− 3

2 . Using (46)–(47) above, we obtain for the first term in (60)

− (η′ + η + 2h)

r3
1

= −
∞∑

n=0

(−1)n1 · 3 · ···(2n + 1)

2nn! R2n+3
1

[
(η′ + η)n+1(η′ + η + 4h)n + 2h(η′ + η)n(η′ + η + 4h)n

]

=
∞∑

n=0

(−1)n+1F−1[T (x′)pn(2kh)]
2nn! (2h)2n+1

⎡
⎣n+1∑

m=0

n∑
q=0

(
n + 1

m

)(
n
q

)
η′m+qηn+1−m(η + 4h)n−q

+2h
n∑

m=0

n∑
q=0

(
n
m

)(
n
q

)
η′m+qηn−m(η + 4h)n−q

⎤
⎦ . (61)

Consider now the second term in (60). Using the Taylor series expansion of (1 + �2)
− 3

2 (�2 < 1), we obtain

R

r3
1

= R
∞∑

n=0

(−1)n1 · 3 · ···(2n + 1)(η′ + η)n(η′ + η + 4h)n

2nn! R2n+3
1

, (62)

while the gradient of (46) becomes (with n replaced by n + 1)

R

R2n+3
1

= − 1

2n + 1
∇′ 1

R2n+1
1

= F−1[ikT (x′)pn−1(2kh)]
1 · 3 · ···(2n + 1)(2h)2n−1 , (63)

giving

∇′η′ · R

r3
1

=
∞∑

n=0

n∑
m=0

n∑
q=0

(−1)n
(

n
m

) (
n
q

)
ηn−m(η + 4h)n−qη′m+q∇′η′ · F−1[ikT (x′)pn−1(2kh)]

2nn!(2h)2n−1 (64)

By carrying out the integration over the x′-variable we obtain, similarly as in (57),

1

2π

∫
x′

φ̃′ ∂

∂n′
1

r1
dS = 
(1)(φ̃) +

∞∑
n=0


(n+2)(φ̃, η), (65)
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where 
(1)(φ̃, η) = −F−1[e−2khF(φ̃)], and, for n ≥ 0,


(n+2)(φ̃, η) =
n+1∑
m=0

n∑
q=0

(
n + 1

m

) (
n
q

)
ηn+1−m(η + 4h)n−q (−1)n+1F−1[e−2kh pn(2kh)F(φ̃ηm+q)]

2nn! (2h)2n+1

+ 2h
n+1∑
m=0

n+1∑
q=0

(
n + 1

m

) (
n + 1

q

)
ηn+1−m(η + 4h)n+1−q (−1)nF−1[e−2kh pn+1(2kh)F(φ̃ηm+q)]

2n+1(n + 1)! (2h)2n+3

+
n∑

m=0

n∑
q=0

(
n
m

) (
n
q

)
ηn−m(η + 4h)n−q (−1)nF−1[e−2kh pn−1(2kh) ik · F(φ̃ηm+q∇η)]

2nn!(2h)2n−1 (66)
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